Biological Image Processing

Physiology and Function C428/615 Martin Jagersand

With illustrations from: Tutis Vilis Talia Konkle and others as cited

Visual Processing elements and Pathways

- Eye transforms light into nerve impulses
- Optic chiasm splits left and right visual fields
- LGN: Exact function unknown. May have to do with stereo.
- V1 (Striate cortex) performs spatial filtering / coordinate transforms

Primary visual cortex

The Eye The Biological Camera

- Lens, cornea and fluids focus light.
- Six eye muscles orient the eye
- Iris adjusts light
- Retina captures images

Retina Converts light to nerve impulses

- Photoreceptor
 converts light
 - Other cell layers perform image processing

Photoreceptors Rods and cones

Rods: Night vision, but no color.
125million, none in fovea, outnumber cones 20:1
Cones: Color sensitive, but poor light sensitivity 6.4million, peak density in fovea

Large molecule with two energy levels Photopigment

- Cis retinal has low energy
- Trans slightly higher energy
- Incoming light photon adds energy => changes cis to trans state.

Interneurons and Ganglion

Center-surround organization:

- 1. Light hyperpolarizes the rod and excites the bipolar cell below it
- 2. But inhibitory connections through horizontal cells suppress signals
- 3. Best response to localized "dot"
- 4. While stimulating surround only lowers firing rate
- What is this???

Convolution!!! Im*[-1 2 –1]

Disappearing figure?

•Focus steadily on first the left then the right black dot

The visual system adjusts itself.

- In time.
- In space.

- Why does it adjust?
 - sensitivity and gain?
 - neural fatigue?
 - adjustment of priors? (effects in the opposite direction)
 - Error correction?

Color opponency, receptor adaptation

Color opponency, receptor adaptation

Color opponent ganglion cells

•Red-green and

blue yellow

Color opponent ganglion cells

red ON/green OFF red OFF/green ON

blue ON/yellow OFF

Fig. 22. Summary diagram of midget pathways of the primate relina with center and surround wiring.

Summary of color opponency

Alina

Laterate Geniculate Nucleus LGN:

- "Switchboard" between retina and visual cortex.
- Exact function unknown
- Retinotopic. Axons from left and right eyes in alternate layers.
- Cells with same spatial angle but different eye adjacent

Visual Cortex: P and M cells

Projections of the lateral geniculate nucleus to the striate cortex

Magnocellular layers: 1 & 2 (motion) Parvocellular layers: 3 - 6 (form & color)

Simple Cells in V1 Direction sensitive "line finders"??

- Responds best to edge segments of particular orientation
- Like convolving image with line filters?!?

Receptive Field

V1 Simple cells What are they for?

- Spatially localized filters can be found with
- 1. Many (all needed) orientations.
- 2. Many scales.
- Perhaps performing localized spatial frequency analysis?

Complex and Hyper-complex cells More cells in V1:

- •<u>Complex cells:</u> No specific retinotopic region. Responds to particular orientation or direction over a wide area.
- •<u>Hypercomplex cells</u>:End stop. Only responds to a terminating line.

Dorsal and Ventral Pathways Where/What or Action/Perception?

Dorsal (magno) Pathway

to parietal lobe
spatial vision – localization in space
"WHERE"

Ventral (parvo) Pathway •to temporal lobe

•object recognition •"WHAT" Spatial vision pathway

Object recognition pathway

TORIDORS

Example responses Higher cells in the M pathway

- •<u>Follower neurons</u>: Responds to particular object moving regardless of where in the visual field.
- •<u>Reach neurons</u>: Responds when reaches to contact a specific 3D location.
- •<u>Attention neurons</u>: Responds when gaze is directed to a specific object.
- •<u>Gaze neurons</u>: Responds when gaze is directed to a specific 3D location.

Kaniza triangle

A stimulus in context

Minal

El Martin

14

B or 13?

Only reasonable 3D interpretations come to mind....

m 11 3

Change blindness

What does this say about our perception and memory of the world?

Do no

I'm going to show you a picture and I want you to **remember** it!

(you'll have 3 seconds)

Which One Did You See?

A

С

D

Which One Did You See?

too close <

→ too far

Boundary Effect

Background

Intraub and Richardson (1989) Intraub and Bodamer (1993) Intraub (2002) Bertamini (2005)

Attention

Attention

Attention

Yarbus 1967

Visual Search

Search for the red vertical

Search for the red vertical again

Guiding attention by color... pretty easy Guiding attention by color AND orientation, more difficult

one more time, find the red vertical

How do we explain this? feature maps

Bottom-up "pop-out" processing (Anne Treisman)

Bio motion (Gestalt, or expectations?)

A Good

• http://www.biomotionlab.ca/Demos/BMLwalker.html

Conclusions: Biological vision

- •The visual system provides researchers with a window into the brain.
- •A fair amount is known about the eye, retina and early retinotopic areas like striate cortex (V1).
- •Less is known about the function of higher areas.

Ser 1

4

