CMPUT 204 Winter 2001: Section B2

Midterm 1

Monday, Feb. 4

Time: 50 minutes

Weight 20% Total Points 40

Last name:	
First name:	
Unix ID:	

- No books or notes are allowed.
- No calculators or other mechanical devices are allowed.
- A signature sheet will be circulated.
- This exam has 5 pages and 7 questions. You are responsible for checking that your exam booklet is complete.

Question 1 [3 points]

Consider the following program:

```
int foo(int n) {
   int res = 1;
   int half = n/2;
   for (i=0;i<half;i++) {
     res += foo(i);
   }
   for (i=half;i<n;i++) {
     res += i;
   }
   return res;
}</pre>
```

Write a recurrence relation expressing the number of additions that are done for the input n. Do <u>not</u> attempt to solve it.

1

Last NameID	2
-------------	---

Question 2 [2 points]

Give a big- Θ expression for T(n) where

$$T(n) = \begin{cases} 64T(\frac{n}{4}) + n^2 & n > 0\\ 1 & n = 0 \end{cases}$$

Question 3 [10 points]

Consider the following strange variant of binary search of a sorted array. The idea is to split the input array into 3 unequal pieces, and recursively continue the search in one of those pieces.


```
int Search(Element[] E, int low, int high, Key k) {
  int index = -1;
  if (low==high) {
    if (k == E[low].key) index = low;
  } else {
    int sixth = (5*low+high)/6;
    int half = ( low+high)/2;
    if (k < E[sixth].key) {</pre>
      Search(E,low,sixth,k);
    } else if (k < E[half].key) {</pre>
      Search(E,sixth+1,half,k);
    } else {
      Search(E,half+1,high,k);
    }
 return index;
}
```

Using the number of array (or subarray) elements as a measure of size, and using key comparisons as the basic operation, do the following:

Last Name	First Name	. ID	3
3.a [2 pts]:	State a recurrence relation f	or the worst case time.	
3.b [2 pts]:	State a recurrence relation f	for the best case time.	
	Solve the expression found fower of an appropriate base).	for the best case. (You mag	y assume n is
3.d [2 pts]:	State a recurrence relation for	or the average time. Explic	itly state any
	hat you make.		·
3.e [2 pts]:	State a big- Θ expression for	the worst case space usage	
Question 4 [Given two inte	[3 points] egers, m and n , of arbitrary s	size, what are the worst cas	se costs for:
1. adding t	hem		
2. multiply	ing them		
3. comparii	ng them		

.

rst NameID	
r	st NameID

Question 5 [8 points]

$$T(n) = \begin{cases} 2T(n/5) + n^2 & n > 1\\ 1 & n = 1 \end{cases}$$

5.a [2 pts]: State the asymptotic complexity of of T(n) (note: $\lg 5 \approx 2.3$)

5.b [6 pts]: Solve the recurrence exactly for n being a power of 5.

Question 6 [11 points]

6.a [3 pts]: Rank the following functions of n by their asymptotic (big- Θ) order. Indicate when functions are in the same complexity class.

$$(\ln n)^2$$

$$\ln(\ln n)$$

$$n \ln n$$

$$n^2 \ln n$$

$$n \ln(n^2)$$

6.b [2 pts]: Give the mathematical definition of $f(n) \in O(g(n))$

6.c [3 pts]: If $f(n) \in \Theta(g(n))$ then which of the following are true:

- 1. $g(n) \in \Theta(f(n))$
- 2. $f(n) \in \Omega(g(n))$
- 3. $f(n) \in o(g(n))$

6.d [3 pts]: Give the simplest big- Θ expression for

$$(\pi n^3 + e^{n-1} + \log_7 n) \cdot (3n^2 + \ln(n^2))$$

Q	Mark	
1		3
2		2
3		10
4		3
5		8
6		11
7		3
Σ		40

Question 7 [3 points]

Solve the following recurrence relation exactly.

$$T(n) = \begin{cases} n + \sum_{i=0}^{n-1} T(i) & n > 0 \\ 0 & n = 0 \end{cases}$$