CMPUT 474 - Midterm Exam (25%)

Instructor: E. Elmallah ()

Date: March 7, 2000

Questions: 4

Total Pages: 2

Time: 70 minutes

Calculators: allowed

Closed Book

(but provide no advantage)

- No questions during exam time.
- If you are unsure, write down your assumptions.
- Answer each question on a separate paper leaf, in order.

Question 1:[25 marks]

Answer true or false, and give a brief explanation.

- 1. If L is an infinite language over an alphabet Σ then \overline{L} (the complement of L with respect to Σ^*) is **finite**.
- 2. If L is a regular language then its complement \overline{L} is also a regular language.
- 3. If r and s are regular expressions then $(r+s)^* = (r+sr^*)^*$.
- 4. To show that a language L is **not** regular, it suffices to show that some subset of L is **not** regular.
- 5. If M is an NFA on n states then M is equivalent to some DFA M' with $O(n^2)$ states.
- 6. Every DFA can be converted to an equivalent DFA that has a single accept state.
- 7. Every NFA can be converted to an equivalent NFA that has a single accept state.
- 8. If $L = \{w | w \text{ is the empty string } \epsilon, \text{ or } w \text{ ends in a } 0\}$ then p = 4 is the **minimum** value that works as a pumping *length* for L. (Recall, the pumping length is the constant used by the Pumping lemma for regular languages.)

Question 2:[22 marks]

- 1. Give an equivalent CFG to G_1 with no ϵ -rules.
- 2. Give an equivalent CFG to G_2 with no unit-rules.
- 3. Draw a FA that recognizes L^* (the Kleene closure) for the language L recognized by M_1 . Label all states, show the start state and all final states. Explain your answer.
- 4. For the generalized FA M_2 , the symbols ϵ , and a through f indicate regular expressions. Show the state diagram (and all regular expressions) obtained after applying the algorithm that converts NFA to regular expressions to eliminate state 2.

Question 3:[10 marks]

Let L be a language on an alphabet Σ . Define the relation \equiv_L on Σ^* as follows: for any arbitrary strings $x, y \in \Sigma^*$, $x \equiv_L y$ if and only if for every string $z \in \Sigma^*$, either $(xz \in L \text{ and } yz \in L)$, or $(xz \notin L \text{ and } yz \notin L)$. Note that \equiv_L is an equivalence relation.

- 1. What are the equivalence classes of \equiv_L , where L is given by the regular expression 0*10*?
- 2. Show that if L is specified by some regular expression then \equiv_L has a finite number of equivalence classes.

Question 4:[12 marks]

- 1. Write the pumping lemma.
- 2. Use the pumping lemma to prove that $L = \{ww | w \in \{a, b\}^*\}$ is not regular.

*** THE END ***