CMPUT 272 Winter 2001: Section B1

Quiz

Wednesday, Feb. 7

Time: 30 minutes

Weight: 10%
Total Points: 30

Last name:	Last na
First name:	First na
Jnix ID:	Unix II

- This quiz is open book
- No calculators or other mechanical devices are allowed.
- This quiz should have 3 pages and 4 questions. You are responsible for checking that your exam booklet is complete.
- In the derivation questions you may only use basic rules of inference, (namely NE, NI, CE, CI, DE, DI, IE, II, EqE, EqI, RE, ContrI). Each step requires a justification (i.e. a reference to the formulas it is inferred from) and an annotation (i.e. the name of the inference rule used).

Question 1 [8 points]

Translate the following sentences into predicate logic using the predicates:

Even(x): indicates that x is an even number.

Odd(x): indicates that x is an odd number.

Prime(x): indicates that x is a prime number.

Div(x,y): indicates that x is evenly divisible by y. E.g. Div(6,2) is true since $\frac{6}{3} = 3$.

The universe of discourse consists of the integers $\{\cdots -1, 0, 1, 2, 3 \dots 24 \dots\}$

1.a [2 pts]: 24 is divisible by the even number 2.

1.b [2 pts]: Any number which is divisible by 24 is also divisible by both 2 and 3.

1.c [2 pts]: Every prime number, except for 2, is odd.

1.d [2 pts]: Every even number is divisible by some odd number.

thus contradiction by

by

bу

bу

bу

not not A[]

A[]

B[]

a4: A[] & B[]

end;

a1:

a2:

a3:

Question 3 [6 points] Show that $\neg P \Rightarrow (Q \Rightarrow R)$ and $(\neg P \Rightarrow Q) \Rightarrow R$ are not logically equivalent. Clearly indicate what evidence/reasoning you use to make this conclusion.

Last Name	First Name	ID	3
Question 4 [8 points] ustifications and annotations.	Give a derivation of B[]	or not E[] given the premises below.	Provide
environ			

p0: E[] implies D[];
p1: not D[] & not B[];

 $\begin{array}{|c|c|c|c|}\hline Qu & Mark \\\hline 1 & 8 \\\hline 2 & 8 \\\hline 3 & 6 \\\hline 4 & 8 \\\hline \Sigma & 30 \\\hline \end{array}$

		.,
•		1
	•	