Professor: Thomas Marke

CMPUT 272 Fall 2000: Section A2

Final

Tuesday, Dec. 12, 14:00 Time: 120 minutes Total Points 60

Last name:
First name:
Student number:

- This exam is open book
- This exam should have 8 pages and 9 questions. You are responsible for checking that your exam booklet is complete.
- Unless otherwise specified, you may use whichever of HR or GT notation you prefer.
- If you need additional space to write you may use the backs of the exam pages. If necessary, additional paper is available from a proctor.

Question	Mark	
1		8
2		2
3		7
4		8
5		8
6		4
7		7
8		6
9		10
Σ		60

Question 1 [8 points]:

In this question use only the basic rules of inference (namely NE, NI, CE, CI, DE, DI, IE, II, EqE, EqI, RE, ContrI). Each step requires a justification (i.e. a reference to the formulas it is inferred from) and an annotation (i.e. the name of the inference rule used).

Given the premises:

```
premise0: not A[] implies not C[];
premise1: B[] implies not D[];
```

Derive the conclusion:

```
(not A[] or B[]) implies not (C[] & D[])
```

Question 2 [2 points]:

Explain in words the difference between the statements $A\subseteq B$ and $A\in B$

Question 3 [7 points]:

Use induction to prove that for all natural numbers n the following holds:

$$\sum_{i=1}^{n} (6i-2) = n(3n+1)$$

Clearly state what your base case, induction step, and inductive hypothesis are, as well as where you use the inductive hypothesis.

Question 4 [8 points]:

Using mizar-like derivations, show that $A - (B \cup C) \subseteq (A - B) \cap (A - C)$. You may use derived rules of inference such as De Morgan's law, and you may combine steps that do not involve quantifiers.

```
environ
```

```
reserve P, Q for SET, x for ELEMENT;

SubsetDef: \forall P,Q [(P\subseteq Q)\Leftrightarrow (\forall x\ (x\in P\Rightarrow x\in Q))];

DiffDef: \forall P,Q [\forall x\ (x\in P-Q\Leftrightarrow (x\in P\land x\notin Q))];

UnionDef: \forall P,Q [\forall x\ (x\in P\cup Q\Leftrightarrow (x\in P\lor x\in Q))];

InterDef: \forall P,Q [\forall x\ (x\in P\cap Q\Leftrightarrow (x\in P\land x\in Q))];

given A, B, C being SET;

begin

claim: A-(B\cup C)\subseteq (A-B)\cap (A-C)

proof:
```

Question 5 [8 points]:

Translate the following sentences into predicate logic using the predicates and constants:

Good(x): indicates that x is good. Child(x): indicates that x is a child.

Gives Gift(x,y): indicates that x will give a gift to y.

The universe of discourse consists of people, including Virginia and Santa.

- 1. Virginia is a good child but Santa will give not her a gift.
- 2. Santa will give a gift to every good child.
- 3. There is no bad child to whom Santa will give a gift.
- 4. Not everybody gets a gift from someone.

Question 6 [4 points]:

Show that the following proposition is a contingency by providing appropriate interpretations.

$$(\exists x \ P(x)) \Rightarrow (\forall x \ P(x))$$

Question 7 [7 points]:

The following procedure takes an array A as input, it modifies the contents of A, and then returns the new A as well as the index sep.

```
Mystery Program
Nat n, sep;
Rat A[1..n];
   Preconditions: n > 0
Nat l, r;
l, r := 1, n;
do
        Variant: ?
       Invariant: ?
      [] l = r + 1 \xrightarrow{exit}
      \tilde{l} l < r+1 \longrightarrow
            if
                 \begin{array}{l} [] \ even(A[r]) \longrightarrow r := r-1; \\ [] \ odd(A[l]) \longrightarrow l := l+1; \end{array} 
                [] odd(A[r]) \& even(A[l]) \longrightarrow
                       A[l], A[r] := A[r], A[l];
                       r, l := r - 1, l + 1;
            fi
od
sep := l;
   Postconditions: ?
```

- 1. State a variant for the loop.
- 2. In words, state the postcondition for this procedure.
- 3. Using formal notation, state the postcondition for this procedure.
- 4. In words, state the invariant for the loop
- 5. Using formal notation, state the invariant for the loop

Question 8 [6 points]:

This question concerns all functions f, g. Determine whether the following statements are true or false. Provide a counterexample for false claims. No justification is required for true claims. (Wrong answers count the same a missing answers :-))

(Recall that the order of composition is different for functions than relations: $(g \circ f)(x) = g(f(x))$.)

- 1. f is a bijection $\Rightarrow f^{-1}$ is a bijection.
- 2. $g \circ f$ is 1-1 $\Rightarrow g$ is 1-1.
- 3. $g \circ f$ is onto $\Rightarrow g$ is onto.
- 4. g is total $\Rightarrow g \circ f$ is total.

Question 9 [10 points]:

x, y, res := X, Y, 1;

The following procedure takes values X and Y as input, and calculates X^Y .

Nat X, Y, res;
Preconditions: n > 0Nat x, y;

do
Variant: yInvariant: $x^y \cdot res = X^Y$ $y = 0 \xrightarrow{exit} y$

Postconditions: $res = X^Y$

You may assume that we have already proven that the variant is nonnegative and decreasing, and that one of the guards always evaluates to true.

a) [8]: Prove that the invariant is true at the beginning of each iteration of the loop.

b) [2]: Prove that the postcondition is true when the loop exits.