Vrolessec Mong2lran 9

CMPUT 229 Computer Organization and Architecture I /} 3

Name:

2000-2001
‘Midterm Examination
(November 15, 2000)

SID:

Do all problems. Closed book and notes. No calculator. Instruction set sheet is provided.

Problem 1 (8 marks)

The following program contains a main program and a recursive fact program that was discussed in
class. fact is first called from main and then recursively. Show the contents of the three stack frames
associated with the invocation of main and the first two invocations of fact (one non-recursive and
one recursive call). Make sure to include the addresses of the items on the stack in your answer. Note

all the relevant register contents and addresses given with the code.

initially, $sp = 0x7fffed10, $ra = 0x00400018 <-------

main:
sub $sp, $sp, 4

make room on stack

sw $ra, ($sp) # save the return address on stack
1i $20, 3 # pass 3 to fact()

jal fact # make the call

address = [0x00400030] here Cmmmmmee
1w $ra, ($sp) # recover return address

addi $sp, $sp, 4 # clean the stack

jr $ra # go back to caller

subroutine fact(int n), which computes n!

address = [0x0040003c] here {mmmmmee
fact:
addi $sp, $sp, -8 # make space for saved registers
sw $ra, 4($sp) # save return address
sw $a0, ($sp) # save parameter n
1i $t0, 1 #if (n > 1)
ble $a0, $t0, else
sub $a0, $%$a0, 1 # a0 = n-1
jal fact # recursive call
address = [0x0040005c] here Cmmmmmm
1w $t0, ($sp) # load n to t0
mul $v0, $v0, $t0 # multiply it with fact(n-1)
b done # v0 contains the result
else:
1i $vo, 1 # return(1)
done:
1w $ra, 4($sp) # restore return address
1w $a0, ($sp) # and a0 (not necessary)
addi $sp, $sp, 8 # clean the stack
jr $ra # go back to caller

£ :839vd

WH31dIN 00 AON

=

‘H ‘ONVHZ

(ev) 622 LNdWD

11290

9{—? 4xz 2:‘“‘

~)
q+4 X lox2 +
~Problem 2 (12 marks) PV TXLxy R

—

Iy + v
Implement the following C subroutine in MIPS subroutine. Assumegthat 31e three parameters are §'Z
passed through $a0, $al, $a2, respectively, and that addai returns its value via $v0. (Note that you
do not need to show how addai is called.)

int addai(int a[], int b, int i) {
return(af[il+b);

}

Problem 3 (8 marks)

Answer the following questions with regard to exceptions.

1. Explain in your own words what is the use of the BadVAddr register in handling an exception.

2. The address error exception ADDRL can occur either in a load instruction (e.g. 1w) or during
instruction fetch. Define a scenario in which the.CPU would generate ADDRL exception during
instruction fetch. Use either words or an actual instruction sequence.

3. In the following exception handler, what is the purpose of the first three instructions in terms of
what information will be stored in $v0? (Note the format of $13 in the comments.

4. In the last four instructions, why do we not add 2 to EPC directly to calculate the return address
but use a kernel register like $k0 instead?

.ktext 0x80000080
EH: mfc0 $k0, $13 # $13 is Cause register whose bits[5-2] = exception code
bits[15-10] = pending interrupts
andi $k0, $k0, O0x3c

$v0, $k0, 2 =rl
nfcO $k0, $14 # $14 is EPC
addi $k0, $x0, 2

rfe
jr $k0

Problem 4 (12 marks)

o]
M
u
x
ALU
Add result 1
. PC3re
RagDst
4 Branch
MemRead
Instruction [31-26] NMemicReg
t Control ALUOp
MemWrite
} ALUSre
RegWrite
Instruction [25-21) Read
Instruction {20-16) Read data 1
f ; registerRZ .
131-0] o o Read Read| 7
Instruction register data M
memory - u
] Instruction {15-11) x{? Data u
mol
Write memory 4
data
Instruction [15-0} 3 [sign |32 ;
N “lextendf
Instruction {5-0]

Refer to the above single cycle datapath. Assume it is executing the instruction add $2, $3, $4, and
the three registers contain 5, 6, and 7 (in 32 bits), respectively. Answer the following questions.

1. In order for the add operation to be performed correctly, the select bits of the four multiplexers
generated by Control should be:

PCSrc = __, MemtoReg = __, ALUSrc = __, RegDst = ____

2. For the same add $2, $3, $4 instruction, the Read register 1, Read register 2, and Write
register inputs of the register file in binary are:

Read register 1= , Read register 2= ,Write register =

3. Also for this add instruction, the outputs of the register file are:
Read data 1 = , Read data 2 =

If now the datapath is executing the instruction addi $2, $3, -4 instead,

4. What are the inputs and outputs of the oval labelled Sign extended? Express your answers in
hexadecimal.

5. Which output of the register file is no longer useful, Read data 1 or Read data 2, and why?

Finally,

6. In general, what type of instructions uses the oval labeled Shift left 27

