Computing Science 115
Final Examination

April 19, 2000

Section: B3- Szafron

~ Last Name:

First Name:

El

Student #:

21 's3ovd

TVNIH 00 HdV
NOH4VZS

(eg) SILL LNdWD

6.0

Instructions:

101]/8 |/10(/8 |/5 |/10 /101/4 /8 |/5 |/12

P A k< e



ID # ~ Cmput 115- B3 Final Examination, April 19, 2000 page 2 of 12

#1[10 marks ] Consider five sorts: BubbleSort, SelectionSort, InsertionSort, MergeSort, and QuickSort(standard
version with left element as pivot). For each of the following situations, pick ONE of these five sorts that you think

a) Start with a Vector of Strings that has 1,000,000 elements and is already sorted in ascending order. Add 5 more
Strings to the end of the Vector. Now sort the elements in ascending order.

Which Sort ?
Why ?

b) Start with one Vector of Strings whose 500,000 elements are already sorted in ascending order and a second

Which Sort ?

Why ?

c) Start with one Vector of Strings whose 1,00,000 elements are already sorted in descending order. Now sort the
elements of the vector in ascending order.

Which Sort ?

Why ?

d) Start with one Vector of Strings whose 1,00,000 elements are in an unknown order. In fact, there is a (1/3) chance
they are in random order, a (1/3) chance they are in ascending order and a (1/3) chance they are in descending
order). Now sort the elements of the vector in ascending order.

Which Sort ?

Why 2

e) Start with one Vector of Persons whose 1,00,000 elements are in random order. Assume that you have enough
memory to store this vector, plus enough memory for as many stack frames as any of the sorts would require.
However, assume that you do not have enough memory to store more than 1,000 extra Person elements. Now
sort the elements of the vector in ascending order.

Which Sort ?

Why ?




D # Cmput 115- B3 Final Examination, April 19, 2000 page 3 of 12

#2 [8 marks ] Consider two implementations of the List Interface: SinglyLinkedList, and CircularList (the standard
textbook implementation that keeps a reference to the last node of the list) and four methods: addToHead(Object),
addToTail(Object), removeFromHead(Object) and removeFromTail(Object). Beside each of the following
combinations, circle efficient if the implementation of the method in the class is O( C) or inefficient if the
implementation of the method in the class is O( n )

Since guessing can produce 4 correct answers without any knowledge, the marks for this
question are as follows: 0, 1, 2 or 3 correct - 0 marks, 4 correct - 1 mark, 5 correct - 2 marks, 6
correct - 4 marks, 7 correct - 6 marks, 8 correct - 8 marks. If you don't know the answer to one of
the parts, you might as well guess, there is no penalty for guessing.

a) SinglyLinkedList - addToHead(Object) efficient inefficient
b) SinglyLinkedList - removeFromHead(Object) efficient inefficient
¢) SinglyLinkedList - removeFromHead(Object) efficient inefficient
d) SinglyLinkedList - removeFromTail(Object efficient inefficient
e) CircularLinkedLisi-addTOHead(Object) efficient inefficient
f) CircularLinkedList - removeFromHead(Object) efficient inefficient
Q) CircularLinkedList - removeFromHead(Object) efficient inefficient
h) CircularLinkedList - removeFromTail(Object) efficient inefficient

#3 [10 marks ] Consider the four search scenarios listed below (a, b, ¢, and d). For each of the scenarios, circle the
word binary if it is possible to do a binary search for that scenario or circle sequential if a binary search is not
possible. Then, use a binary search if possible and a sequential search if a binary one is not possible. Count the
number of element comparisons that will be performed during the search and write this number in the space
provided.

a) Searching for a String in an unsorted Vector of 1,024 Strings and not finding it.

binary sequential Number of element comparisons

b) Searching for a String in a sorted Vector of 1,024 Strings and finding it at the last location searched.

binary sequential Number of element comparisons

¢) Searching for a String in an unsorted SinglyLinkedList of 1,024 Strings and not finding it.

binary sequential Number of element comparisons

d) Searching for a String located at position 512 of a sorted SinglyLinkedList of 1,024 Strings.

binary sequential Number of element comparisons

e) Searching for an Integer in a sorted SinglyLinkedList of 1,024 Integers and not finding it. Assume the List contains
the Integers: 1, 3, 5, ... and assume you are looking for the Integer 512.

binary sequential Number of element comparisons




public class StacksAndQueues {
/*

Program description.
*/

Cmput 115- B3 Final Examination, April 19, 2000

public static void main(String args[]) {

/* Program statements go here. */

Stringf] myStrings = { "wilma",
Stack stackl;

Stack stack2;

Queue myQueue;

int index;

Object element;

stackl = new StackList () ;
stack2 = new StackList();
myQueue = new QueueVector() ;

"fred", "barney”,

for (index = 0; index < myStrings.length; index++)
stackl.add(myStrings[index]);

System.out.println(stackl);

for (index = 0; index < myStrin

element = stackl.remove () ;
myQueue.add(element) ;
stackz.add(element);

}

System.out.println("Stack 1.

while (!stackl.isEmpty()){
element = stackl.remove () ;
myQueue.add(element) ;
element = myQueue. remove () ;
Stack2.push(element) ;

}

System.out.println("Stack 2: "

System.out.println("Queue:

while (!myQueue.isEmpty()){
element = myQueue.remove();
stack2.add(element);

}

System.out.println("Stack 2: "

}
}

OUTPUT

gs.length / 2; index++) {

+ stackl);

+ stack2);

" + myQueue) ;

+ stack?);

page 4 of 12

"pebbles"} ;




ID # Cmput 115- B3 Final Examination, April 19, 2000 page 5 of 12

#5[5 marks] Suppose you have a hash table with room for seven entries (indexed 0 through 6). This table uses open
addressing with the hash function that maps each String to its length modulo 7. Rehashing is accomplished using
linear-probing with a jump of 1. Draw the table after each of Strings: "fred", "pebbles*, "barney”, "dino" and “betty”,
have been added consecutively.

“fred" "fred", "pebbles" "fred", "pebbles" "fred", "pebbles" “fred", "pebbles"
"barney” "barney”, "dino" "barney", "dino”,
"betty"

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 15

6 6 6 6 6

#6 [10 marks] Consider each of the five different three node binary trees:

—

a) Foreach tree, fill in the nodes with 1,2and 3in such a way that an inorder traversal will have the order: 1,2, 3.

b) PutanXinthe Square above each binary tree from a) thatis also a binary search tree.

vy s




Cmput 115- B3 Final Examination, April 19, 2000 page 6 of 12

tree in that order.,

(*9
CHGC

a) Draw this binary search tree after 40 has been added.

b) Draw this binary search tree after 60 has been added to the tree from part a).

c) Draw this binary search tree after 65 has been added to the tree from part b).

d) Draw this binary search tree after 20 has been added to the tree from part c).

e) Draw this binary search tree after 50 has been added to the tree from part d).




ID #

Cmput 115- B3 Final Examination, April 19, 2000 page 7 of 12

#8 [4 marks] Hereis a binary search tree.

a) Draw this binaAry search tree after the node containing 50 has been removed.

b) Draw the binary search tree after the node containing 40 has been removed from the tree in part a)




ID #

Cmput 115- B3 Final Examination, April 19, 2000 page 8 of 12

#9 [8 marks] Consider this binary tree:

(29 (*9)
O & @O ®

a) Listthe elements in the order of a postorder traversal,

b) List the elements in the order of apreorder traversal

€) Thereis a standard way of representin

g a binary tree in an arr
array using this standard representatio

ay. Fill in the elements from the binary tree into the
n. Putan Nin any array location that should contain null.
0 1 2 3 4 5 6 7 8 9 10 11 12 13




ID #

Cmput 115- B3 Final Examination, April 19, 2000 page 9 of 12

#10[5 marks] Consider the Interface Predicate. Fill in the code for the class EvenPredicate that implements it. Recall
that there is an operator called (instanceof) that can be used to check if an object is an instance of some class.

public interface Predicate {

/*
Each class that implements this interface

represents a predicate. A pPredicate is a one

argument function that returns a boolean.
*/

public boolean select (Object anObject);
/*
post: Return true if th

€ given object satisfies
this predicate.

*/
}

public class EvenPredicate implements Predicate {
/*
This class represents th
true if an object is an
otherwise.

*/

€ predicate that returns
even Integer and false

public boolean select (Object anObject) {
/*
post: Return true if the given object is an

even Integer and false otherwise.

*/




ID # Cmput 115- B3 Final Examination, April 19, 2000 page 10 of 12

import structure.*;

public class TestSI {

// This is a test program for the SelectIterator class.
private static final int[] array = {1, 2, 3, 4, s, 6, 7};
public static void main(String args[]) {

// Create a base Iterator, a SelectIterator and try it.
List list;
int index;
Iterator base;
Iterator select;
Predicate predicate;
list = new SinglyLinkedList () ;
for (index = 0; index < array.length; index++)

list.addToTail(new Integer(array{index]));
base = list.elements(); Output
predicate = new EvenPredicate() ;
select = new SelectIterator (base, predicate); 2
while (select.hasMoreElements()) 4
System.out.println(select.nextElement()); 6

}
}

import structure.*;

public class SelectIterator implements Iterator {

/*
An instance of this class filters a base Iterator by selecting
only those elements that satisfy a particular Predicate.

*/

// Instance variables
protected Predicate predicate;
protected Iterator iterator;
protected Object next;

// Public methods
public SelectIterator(Iterator base, Predicate predicate) {
/*
post: construct me to have the given base Iterator and use
the given Predicate.
*/
this.predicate = predicate;
this.iterator = base;
this.primeNext () ;
}

public void reset() {
/*

post: the iterator is reset to the beginning of the traversal.
*/




ID # Cmput 115- B3 Final Examination, April 19, 2000 page

public Object value () {
/*

pre: traversal has more elements

post: returns the current value referenced by the iterator
*/

}

public boolean hasMoreElements(){

/*

pPost: returns true iff the traversal is not complete
*/ .

}

public Object nextElement () {

/*
pPre: traversal has more elements
post: returns the current value referenced by the iterator
and increments the iterator

*/

Object answer;

Assert.pre(this.next '= null, "Iterator has more elements.")

this.primeNext();

}

protected void primeNext () {

/*
Traverse the base iterator until the next acceptable element
is found and bind next to it. If no such element is found
then bind next to null.

*/

Object element;

while

element = this.iterator.nextElement();

if

}

this.next =

110of 12

.
7



ID # Cmput 115- B3 Final Examination, April 19, 2000 page 12 of 12

#12[10 marks] Consider the MultiKeyedCollection interface from the project. We want to add another method to
this interface:

public void selectionSort(String majorAspect, String minorAspect) ;

/*
post: The sort order for the major aspect of the elements is updated using a
selection sort. However, in the case of ties on the major aspect, the minor aspect
should be used to break ties. If the elements don't recognize the major aspect, use
the default aspect. If the elements don't recognize the minor aspect, use the
default aspect. The insertion order and other sort orders are not changed.

*/

To complete the implementation of this method in the MultiKeyedVector class, all of the code has already been written
for you except for the following method whose code you must complete. Assume that the elements you are sorting is
contained in an Array of MultiComparables whose instance variable name is: sortedElements.

protected findMaximumElement (int size, String majorAspect, String minorAspect) {

/* ‘
pre: 0 < size <= size of element array
post: The index of the largest element in the sortedElements array in the range
0..size-1 is returned. The largest element is found by comparing elements using the
majorAspect. However, if there is a tie, then the tied elements are compared using
the minorAspect.

*/




