CMPUT 115 Section B1
Term Test 2

March 12, 2001

Instructions:

This is a closed book, no notes exam.

Try to put all of your answers in the space provided.

There are some blank pages at the end of the booklet for use as scrap paper.
Please do not open the exam until you are instructed to do so.

Good luck.

First Name:

Last Name:

Student Id Number:

1. [10 Marks] Here is some of the List interface.

public interface List extends Collection
{
public Iterator elements();
// post: returns an iterator allowing
/7 ordered traversal of elements in list

public boolean isEmpty () ;
// post: returns true iff list has no elements

public void addToHead (Object value);
// post: value is added to beginning of list

public void addToTail (Object wvalue);
// post: value is added to end of list

public Object removeFromHead() ;
// pre: list is not empty
// post: removes first value from the list

public Object removeFromTail ();
// pre: list is not empty
// post: removes the last value from the list

// etc
}

-The three implementations of the List interface that we studied in class (SinglyLinkedList,
DoublyLinkedList and CircularList) are all linked structures. Could the List interface be

implemented without using a linked structure? If so how? If not then why not?

[15 Marks] What is the time complexity of the following code fragment? Express your

answer as a function of N, and be as exact as you can be. Some of the source code for the

OrderedVector class can be found at the end of this exam booklet.

OrderedVector v = new OrderedVector () ;
for (int i = 0; 1 < N; i++) ,
v.add(new Integer (i));

'

Page 2 of 8

et S e e e L - o R - [N . E PN

Student Id Number:

[15 Marks] What output would the following code produce? Please put your answer to the
right of the code.

public static void output ()

{
Stack stack = new StackList();
Queue queue = new Queuelist();

for (int i = 0; 1 < 5; i++)
stack.add(new Integer(i));

while (!stack.isEmpty ())
queue.add(stack.remove());

while (!queue.isEmpty())
System.out.println(gqueue.remove());

[15 Marks] How many calls to the String class’s compareTo method will be made when the
following code fragment is executed?

OrderedList list = new OrderedList () ;
list.add("a");

list.add("c"
list.add("E"
list.add("B"
list.add("D"
list.add("F"

h
’
7

I

7

[20 Marks] The interface java.util.lterator is defined as follows (the main difference from
structure.lterator is the remove method).

public interface Iterator {
public boolean hasNext () ;
public Object next();
public void remove /() ;

}
Complete the following implementation of the Vectorlterator class which implements the

java.util.lterator interface (instead of structure.lterator). To do this you will need to
implement the remove method. There is space to put your answer on the next page.

Page 3 of 8

e e e i T el e D L e e ce i Yenlll TR S e o Sl L

Student Id Number:

public class VectorIterator implements java.util.Iterator {
protected Vector theVector;
protected int current;

public VectorIterator (Vector v) ({

// Constructs an initialized iterator associated with v.
theVector = v;
current = 0;

}

public boolean hasNext () {
// Returns true if the iteration has more elements.
return current < theVector.size();

}

public Object next() {
// Returns the next element in the iteration
return theVector.elementAt (current++) ;

}

public void remove() {

// Removes from the underlying collection the last element
// returned by the iterator. Calling this method should not
// affect what is returned by the next call to next().

Page 4 of 8

Student Id Number:

6. [15 Marks] Complete the following implementation of the OrderedList's add method by filling
in the blanks. '

public class OrderedList implements OrderedStructure

{
protected SinglyLinkedListElement data; // smallest value
protected int count; // number of values in list

public void add(Object value)
// pre: value is non-null
// post: value is added to the list, leaving it in order
{
SinglyLinkedListElement previous = null;
SinglyLinkedListElement finger = data;
Comparable cValue = (Comparable)value;
// search for the correct location

// spot is found, insert

count++;

Page 5 of 8

Student Id Number:

Some source code from the structure package.

public class OrderedVector implements OrderedStructure
{

protected Vector data;

public void add(Object value)
// pre: value is non-null
// post: inserts value, leaves vector in order
{
int position = indexOf ((Comparable)value) ;
data.insertElementAt (value,position);

}

protected int indexOf (Comparable target)
// pre: target is a non-null comparable object
// post: returns ideal position of value in vector

{
Comparable midvValue;
int low = 0; // lowest possible location
int high = data.size(); // highest possible location
int mid = (low + high)/2; // low <= mid <= high
while (low < high) {
midvalue = (Comparable)data.elementAt (mid);
if (midvalue.compareTo (target) < 0) {
low = mid+1;
} else {
high = mid;
}
mid = (low+high)/2;
}
return low;
}
// etc

} // end of OrderedVector class

Page 6 of 8

Student Id Number:

Extra paper for rough work

Page 7 of 8

B

Student Id Number:

Extra paper for rough work

Page 8 of 8

