Computing Science 115
Final Examination

April 27, 2000

9:00AM PAVILLION

Section: B1- Sorenson

Last Name:

3]

L1 :S3OVd

VNI 00 HdV
NOSN3HOS

(19) SLL LNdWND
YAWALN]

First Name:

Student #:

Instructions:

The time for this test is 3 hours. No references or calculators are
allowed. Place all answers in this booklet and do not hand in
any other work. The mark total for this exam is 100.

#1 |#2 |#3 |#4 |#5 |#6 |#7 |#8 |#9 #10|#11 TOTAL

[10|/6 {/10(/10|/8 |18 |/5 |/15 /10 (/8 /10 /100

Cmput 115- B1 Final Examination, April 27, 2000 page 2 of 11

¢ Yyour program is to produce in response to the input of a phone number, a screen that lists the phone
number and associated client information as wel| as the phone number and client information for the
six closest numbers that are in the collection. For example if the dispatcher types 492-1071, a list such
as the following would appear on the screen, with the target number and associated client information
presented in the middle and in bold type.

)

(492-1 001 C. Nichols, 213 Eim Street, 08:12/09:00/
492-1043 D. William,

492-1055 E. Wiadek, :

492-1071 C, Jones, 2441 115 Street, 08:34/09:15/

492-1121T. Todd,

492-1334 A. Allen,

492-2109 J. Black, ' J

N

Specifically, you are to state what classes and methods you would use to organize and maintain this
collection. Your design should recognize the size and growth of the collection and satisfy the reporting
requirements as outlined above. You must briefly justify your choice of collection organization and
associated methods in no more than the space below.

ID# Cmput 115- B1 Final Examination, April 27, 2000 page 3 of 11

#2 [6 marks] Assume you must manage a collection of information.

When would you use an insertion sort?

When would you use a mergesort as opposed to quicksort?

#3 [10 marks] Pick a method for a List as described in the text which has a worst case performance of

O(n), where n is the number of elements in the List. Prove by induction that this method is indeed O(n) in
its worst case.

a) O(n) method chosen is:

b) Show proof by induction that it is O(n) in worst case.

¢) What is the order of the best case for your chosen method?

ID# Cmput 115- B1 Final Examination, April 27, 2000 page 4 of 11

a) Method chosen are: and

b) Provide implementations in space below.

ID# Cmput 115- B1 Final Examination, April 27, 2000 page 5 of 11

#5 [8 marks] Principle Questions:

Many principles are discussed in the textbook and four such principles are listed below. Choose one from
a) or b) and one from ¢) or d) and, for each Case, explain in at most two sentences what the principle
means and provide an brief example of how/when the principle applies.

a) Recursive structures must make “progress” towards a “base case”.

b) Every public method of an object should leave the object in a consistent state.

¢) Never modify a data structure while an associated Enumeration js Jive.

d) Don't let opposing references show through the interface.

Explanation for [which one a) or b)?].

Explanation for [which one ¢) or d)?]

ID#

Cmput 115- B1 Final Examination, April 27, 2000

page 6 of 11
#6 [8 marks] Consider each of the following three different binary trees: |
O O }
i) inorder ii) preorder iii) postorder

2and 8insuch a way that a inorder traversal will have the
ii), fill in the nodes with 6, 4,2and 8in

such a way that a preorder traversal
will have the order: 2, 4, 6, 8. For tree iii), fill in the nodes with 2,4,6and 8 in such a way that a
postorder traversal will have the order: 2, 4, 6, 8.

b) Putanxinthe Square above each binary tree from a) that is also a binary search tree.

#7 [5 marks] Here is a binary search tree after the Integers 35, 15 and 50 have been added to an empty
binary search tree in that order.

(%)
O &

a) Draw this binary search tree after 60, 30, and 50 have been added in the given order.

b) Draw this binary search tree after 60 and then 35 have been removed from the tree you drew in
answering part 7a). :

ID# Cmput 115- B1 Final Examination, April 27, 2000 page 7 of 11

(MXP) from the root to a leaf. In the following tree the MXP — MNP =3-1=2 One strategy to assist in
maintaining good search performance in a BST is to totally rebalance a tree if

MXP ~ MNP > 2. Please answer the following questions related to this
rebalancing strategy.

a) Complete the following method for calculating MXP.

public static int mxp (BinaryTreeNode n) @

Il post: returns the length of the longest path between the root node and

/l a leaf of the tree @

b) What is the order (in O notation) of your mxp method?

ID# Cmput 115- B1 Final Examination, April 27, 2000

page 8 of 11

bProtected BinaryTreeNode root; //rootof s subtree to be traversed

pProtected Stack todo; // stack of unvisited ancestors of current
public void reset() ({

if (root 1= null)

public Object nextElement () {
//pre: hasMoreElements()
//post: returns the next element, increments the iterator.
BinaryTreeNode old;
BinaryTreeNode current;

Object result ;

if (old.right 1= null)

if

ID# Cmput 115- B1 Final Examination, April 27, 2000 page 9 of 11

#10 [8 marks] Hash Tables:

open addressing with linear probing and a hash function that maps each String to its length modulo 7.
Assume the table initially contains one element with the key of “Ellis” and the table is rehashed if the load
factor gets over 0.7. Deleted entries should be marked as ‘reserved”. Show the contents of just the key
objects for the hash table (do not show the value object part) after the following methods are performed:

put ("Gretzky", centre)
put (*Salo”, goalie)
put (“Lowe”, coach)
remove (“Salo”)

put ("Ranford”, goalie)

ORhWON

0 0 0 0 0
1

-
-—

1 1

2 2 2 2 2
3 3 3 3 3
4 “Dowd” 4 “Dowd” 4 “Dowd” 4 “Dowd” 4 “Dowd”
5 5 5 5 5
6 6 6 6 6

After operation 1 After operation 2 After operation 3 After operation 4 After operation 5
b) How many more entries must be added after operation 5 before we must rehash the table?

c) What is the average number of operations that must be performed to find an existing key in the hash
table after operation 4 above has been completed?

d) What's wrong with the hash function we have chosen in this example?

ID # Cmput 115- B1 Final Examination, April 27, 2000 page 10 of 11

#11[10 marks] Consider adding a MultiSortedVector class to the project. When a MulitSortedVector is
Created, it is given an Array of aspect names, just like a MultiKeyedCollection. The code for the
constructor is shown below. There is a Vector to keep track of the insertion order. The other instance
variables for MultiSortedVector are similar to the instance variables for MultiKeyedVector. In
MultiKeyedVector there was a Vector of aspect Strings and a parallel Vector of Arrays. In this case, we
have a Vector of aspect Strings and a parallel Vector of Vectors. Each of these Vectors is a sorted Vector
for the corresponding String aspect. Each time a new element is added to the MultiSortedVector, a
reference to the new element is added to the correct location in each Vector, based on its sort order for
each aspect. In addition, the new element is added to the end of the insertion Vector. The code for the
add (MultiComparable) method is given, but it relies on the method

findsortedLocation (Vector, string, MulticComparable) . Fillin the code for this method.

public class MultiSortedvVector {
// Instance Variables
protected Vector insertionVector;
protected Vector aspects;
protected Vector sortedVectors;

// Constructor

public MultiSortedVector(String[] aspects) {
/*

post: Initialize the MultiSortedvVector to have zero elements,
* / _ :
int index;

this.insertionVector = new Vector();

this.aspects = new Vector () ;

this.sortedVectors = new Vector();

for (index = 0; index < aspects.length; index++) {
this.aspects.addElement(aspects[index]);
this.sortedVectors.addElement(new Vector());

}

}

public void add (MultiComparable element) {
/*
post: The given element is added at the end of the insertion order Vector and at the
appropriate locations for each of the sort order Vectors.,
*/

Vector vector; string aspect;
int index;

int location;

Vector sortedvVector;

for (index = 0; index < this.aspects.size(); index++) {
aspect = (String) this.aspects.elementAt(index);
vector = (Vector) this.sortedVectors.elementAt(index);
location = this.findSortedLocation(vector, aspect, element);
Vector.insertElementAt(element, location);

}: :

this.insertionVector.addElement(element);

}

Cmput 115- B1 Final Examination, April 27, 2000

page 11 of 11

MultiComparable element) ¢{
/s\-

String aspect,
Post: Return the index of

the given Vector wh
inserted, based on the giwv
*

e€re the given element should be
en aspect.

-

Have a Great Summer!

